Lors du colloque « Horizons Mathématiques », organisé à Lille en l’honneur de Rudolf Bkouche, en mars 2018, nous avons animé un atelier intitulé : Autour du théorème de Pythagore : grandeurs et nombres.

L’objectif de l’atelier était de lire une partie du dernier article de Rudolf Bkouche dans le Bulletin Vert de l’APMEPen l’illustrant par la lecture de certains des textes évoqués dans l’article.

Rudolf Bkouche développe dans l’article cité la double lecture qu’on peut faire du théorème de Pythagore, selon qu’on considère les grandeurs ou les nombres mesures de ces grandeurs.

Pour les Grecs de l’Antiquité, ce théorème porte sur les aires en tant que grandeurs, et non pas en tant que nombres. Le problème fondamental est l’existence de grandeurs incommensurables, comme le côté et la diagonale d’un carré. Or, pour les Grecs de l’Antiquité, les nombres sont les nombres entiers supérieurs ou égaux à 2. On peut considérer des proportions entre ces nombres, mais les nombres entiers et les proportions entre nombres entiers ne suffisent pas à rendre compte des grandeurs géométriques.

Mais on peut aussi considérer ce théorème comme un théorème sur les mesures des aires, c’est-à-dire sur des nombres. C’est le point de vue de Legendre dans ses Éléments de géométrie.

Nous avons lu dans l’atelier des extraits des Éléments d’Euclide et du livre de Legendre, afin de comparer les deux points de vue, en complétant cette lecture par un extrait d’un livre de Tannery, où celui-ci réconcilie les deux points de vue et d’un extrait d’un texte de Dedekind, sur la construction des nombres réels par les coupures.

Vous trouverez dans ce dossier quelques extraits de textes lus durant l’atelier, en complément de l’article (à paraître) dans les Actes du colloque, avec une rapide présentation du texte.

  un extrait des éléments d’Euclide

  un extrait des éléments de géométrie de Legendre

  un extrait de Continuité et nombres irrationnels de Richard Dedekind 

  un extrait des  Leçons d’arithmétique théorique et pratique de Tannery 

  un extrait d’un manuel de TC de 1971

 

Martine Bühler et Anne Michel-Pajus


Rudolf BKOUCHE, «Sur les démonstrations du théorème de Pythagore. », Bulletin de l’APMEP, 523. p. 195-206, 2017.

Adrien-Marie LEGENDRE, Eléments de Géométrie, seconde édition, An VIII, Paris.

Jules TANNERY, Leçons d’arithmétique théorique et pratique,deuxième édition, Paris, 1900.

Richard DEDEKIND, La création des nombres, Introduction, traduction et notes par HouryaBenis Sinaceur, Librairie Philosophique J. Vrin, Paris, 2008, page 60.